This page lists all the publications, posters and talks by our NRT students.

- J. D. Moorman, Thomas K. Tu, D. Molitor, and D. Needell, “Randomized Kacmarz with Averaging.” Proc. Information Theory and Applications Workshop, La Jolla, CA, Feb. 2019.
- Y. Qiao, C. Shi, C. Wang, H. Li, M. Haberland, X. Luo, A. M. Stuart, and A. L. Bertozzi, Uncertainty Quantification for Semi-Supervised Multi-Class Classification in Image Processing and Ego-Motion Analysis of Body-Worn Videos, to appear in Proc. Eletronic Imaging, Burlingame, 2019.
- J. Y. Jiang, M. Zhang, C. Li, M. Bendersky, N. Golbandi, and M. Najork. Semantic Text Matching for Long-Form Documents. In Proceedings of the 2019 World Wide Web Conference (WWW’19), ACM, 2019.
- Z. Li, J. Y, Jiang, Y. Sun, and W. Wang. Personalized Question Routing via Heterogeneous Network Embedding. In Proceedings of The 33rd AAAI Conference on Artificial Intelligence (AAAI’ 19), AAAI, 2019.
- J. D. Moorman, Thomas K. Tu, D. Molitor, and D. Needell, “Randomized Kacmarz with Averaging.” Proc. Information Theory and Applications Workshop, La Jolla, CA, Feb. 2019.
- N. Baker, H. Lu, G. Erlikhman, and P. J. Kellman. Local features and global shape information in object classification by deep convolutional neutral networks. Journal of Vision. 2019 (under review)
- J. D. Moorman, T. Tu, D. Molitor, and D. Needell. Randomized Kacmarz with Averaging, Information Theory and Applications. (2019)
- Chiu AM, Mitra M, Boymoushakian L, Coller HA. ”Integrative analysis of the inter-tumoral heterogeneity of triple-negative breast cancer” Scientific Reports. 8(1):11807, 2018
- N. Baker, H. Lu, G. Erlikhman, and P. J. Kellman. Deep convolutional networks do not classify based on global object shapes. PLoS computational biology, 14(12), e1006613. 2018.
- J. Y. Jiang, and W. Wang. RIN: Reformulation Inference Network for Context-Aware Query Suggestion. In Proceedings of The 27th ACM International Conference of Information and Knowledge Management (CIKM’ 18), ACM, 2018.
- G. Zhou, J. Y. Jiang, C. J.-T. Ju, and Wei Wang. Inferring Microbial Communities for City Scale Metagenomics Using Neural Networks. To appear in Proceedings of 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM ’18), IEEE, 2018.
- J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd, and A. L. Bertozzi, “Filtering Methods for Subgraph Matching on Multiplex Networks.” Proc. GTA3 2.0: The 2nd workshop on Graph Techniques for Adversarial Activity Analytics, IEEE International Conference on Big Data, Seattle, WA, Dec. 2018.
- B. Yuan, H. Li, A. L. Bertozzi, P.J. Brantingham, and M.A. Porter, Multivariate Saptiotemporal Hawkes Processes and Network Reconstruction, submitted to SIAM Journal on Mathematics of Data Science, 2018.
- N. LaPierre, S. Mangul, M. Alser, I. Mandric, N. Wu, C. Koslicki, and E. Eskin. MicoP: Microbial Community Profiling method for detecting viral and fungal organisms in metagenomic samples. bioRxiv, 243188. BMC Genomics, 2018.
- N. LaPierre, R. Egan, W. Wang, and Z. Wang. MiniScrub: De Novo Long read scrubbing using approximate alignment and deep learning. bioRxiv, 433573. 2018.
- T.R Meyer, D. Balagu, M. Camacho-Collados, H. Li, K. Khuu, P.J. Brantingham, and A. L. Bertozzi, A year in Madrid as described through the analysis of geotagged Twitter data, to appear in Environment and Planning B: Urban Analytics and City Science, 2018.
- J. D. Moorman, Q. Chen, T. Tu, M. B. Zachary, and A. L. Bertozzi. Filtering Methods for Subgraph Matching on Multiplex Networks. 3980-3985. (2018)
- H. Chen, H. Li, A. Song, M. Haberland, O. Akar, A. Dhillon, T. Zhou, A. L. Bertozzi, and J. P. Brantingham, Semi-supervised First-person Activity Recognition in Body-Worn Video, in preparation.

- J. D. Moorman, “Randomized Kacmarz with Averaging.” Information Theory and Application Workshop, La Jolla, CA, Feb. 2019. (poster)
- H. Li, Uncertainty Quantification for Semi-supervised Multi-Class Classification in Image Processing and Ego-Motion Analysis of Body-Worn Videos, IS&T Eletronic Imaging, Burlingame, 2019.
- N. LaPierre. “Miniscrub: De Novo Long read scrubbing using approximate alignment and deep learning. AWS-UCLA Symposium Presentation. February, 2019.
- Chiu AM, Pasaniuc B, Sankararaman S. ”Binomial probabilistic principal component analysis for genotype data” American Society for Human Genetics, 2018.
- Chiu AM, Pasaniuc B, Sankararaman S. “Binomial probabilistic principal component analysis for genotype data” 4th Annual QCBio Retreat, 2018.
- P. J. Kellman, and N. Baker. Visual perception of shape in humans and deep convolutional neural networks. Talk at the Society of Experimental Psychologists. Tuscon, Arizona. 2018.
- N. Baker, G. Erlikhman, H. Lu, and P. J. Kellman. Deep convolutional networks do not perceive illusory contours. The 40th Annual Meeting of the Cognitive Science Society. Madison, WI. 2018. (Poster)